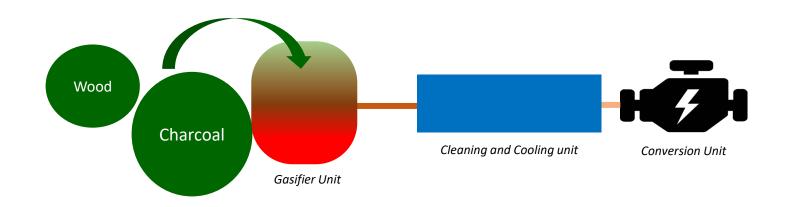
NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Feasibility of Bio-Gasification Technology for Rural Off-Grid Electrification in Namibia

Palyomwene Mutilifa (NUST)

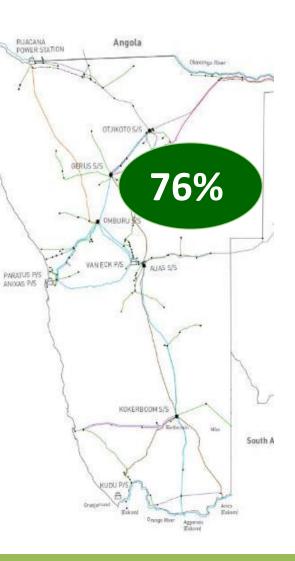
Background

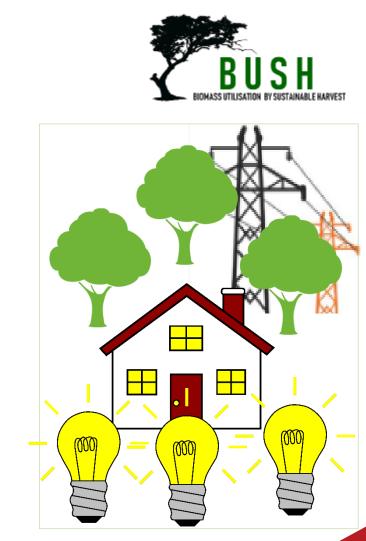
- Bush Encroachment!
- Biomass Gasification is a thermochemical conversion process through which combustible material such as biomass, is subjected to partial combustion in the presence of limited supply of air
- The combustible gas is composed primarily of carbon monoxide (CO), Hydrogen (H2) and methane (CH4) as fuels.
- Ancient Technology:
- Street lights in the 1800s
- 900 000 Cars ran on 1900s



Background

Biomass Gasification CAN provides clean alternative source of base load electricity





german cooperation

Currente Rival

Existing Gasification Plant In Namibia

Name	Location	Manufacturer	Type of Gasifier	Biomass	Rated Output	Status
CBEND	Farm Pierre, Outjo	Ankur Scientific Energy Technologies Pty. Ltd	Downdraft fixed bed	Woodchip / woodblock	250 kW	Shut down
Makarra Briquette	Otjiwarongo	Local	Updraft fixed bed	Charcoal	42.4 kW	Shut down
Makarra Charcoal	Otjiwarongo	Local	Downdraft fixed bed	Charcoal	44 kW	Running
NUST Trailer	NUST, Windhoek	Carbo Consult & Engineering (Pty) Ltd	Updraft fixed bed	Wood / Charcoal	15 kW	Running

Existing Gasification Plant In Namibia: CBEND

qiz

cooperatio

- Project costed N\$14 000 000.00
- 1.0-1.1 N\$/kW Levellised cost
- Created 30 Jobs

Challenges	Recommendations	
Wood Preparation Equipment	Reliable and efficient wood preparation methods	
Heat loss not stored as source of Thermal Energy	Heat loss should be captured for energy application	
Usage of Refrigeration system(15 kw)	The electricity generated should be in	
Only 50kW/250kW was registered	directly fed to off-grid communities rather than the national grid.	

Gasification system on such a large scale are simply not feasible for rural Namibia (Andrew, Richard, Robert, & Wang, 2011).

Existing Gasification Plant In Namibia: Makarra Briquette

No.	Parameter	Unity	Value
1	Operational Hours	h	23
2	Operational days	day	6
3	Capital cost (Technology & Installation)	N\$	25 000.00
4	Biomass Cost	N\$/t	1500.00
5	Required Biomass	t/yr.	45
8	Diesel cost saved	N\$/yr.	811 200.00
9	Total fuel cost	N\$/yr.	448 350.00
10	Producer Gas: Diesel Ratio	-	77:23
11	Approx. Biomass Collection Radius	Km	0.5
12	Peak Load	Kw	20

- Problems: Lack of technical knowledge, maintenance, Instrumentations, Mismanagement of tar, ash
- The plant was expanded in April 2019 & is now powered by CENORED and planning to switch to solar power by 2020.

Existing Gasification Plant In Namibia: Makarra Charcoal

No.	Parameter		Value	
1	Operational Hours	h	8	
2	Operational days	day	5	
3	Capital cost (Technology & Installation)	N\$	45 000.00	
4	Biomass Cost	N\$/t	1500.00	
5	Required Biomass	t/yr.	4	
10	Producer Gas: Diesel Ratio	-	25:85	
11	Approx. Biomass Collection Radius	Km	0.05	

- Lack of constant monitoring at the grate, Frequent shaking
- Poor gas filtering system : Mattress Foam
- Lack of Instrumentation

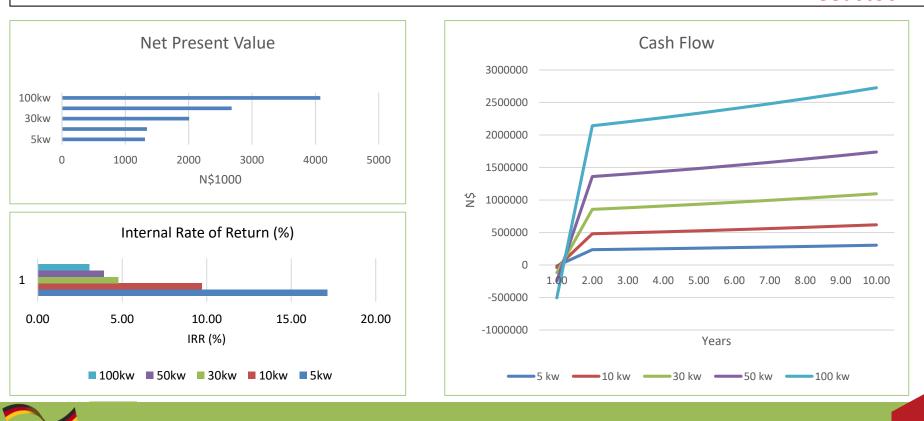
Existing Gasification Plant In Namibia: NUST TRAILER

- ¼ systems to run on Petrol
- On average, petrol engine running on combustible gas produces 0.55-0.75 kWh of energy from 1kg of biomass (Rajvanshi, 1986).
- Excellent gas clean-up systems (Cyclone, wet charcoal & wood shaving).
- Still being renovated for experimental purposes

'The barriers facing gasification are meanwhile too Disagree! Disagree!				
significant and wide-ranging for research to m significant difference to uptake. Gasification-research is therefore not deemed worth support (LTS, 2017) Barriers Feedstock quality and availability Constraint Technology Limitation Lack of Viable Business Model Limited Operator technical capacity Poor access to manufacturer support and	Gasification-related	Abundant Biomass		
	d worth supporting"	Training		
Barriers		Local Manufacturers		
Feedstock quality and availability Constra	int	Fulfils HPP-1 provision of	to increase the rural	
Technology Limitation	Feedstock ash Content	electrificatio		
Lack of Viable Business Model	Different Feedstocks	Gasification	Awareness	
Limited Operator technical capacity	Kernel shell exudes acidic oil	Fuel Wood wor	ks well with	
	 Lack of instrumentations International manufacture 	gasifiers (Dimpl,	,2011)	
spare parts	 Installing Capacity>100 kW 	Feasible In Nam	ibia	

RAPID APPRAISAL TOOL FOR RURAL ELECTRIFICATION – GASIFICATION

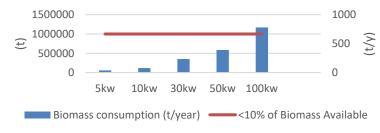
Plant Maintenance Once a week 312 days/yr. Instrumentation Downdraft gasifier 70% Syngas Engine deration 30%



giz Bustoche Gesellschaft für Internationale Zusammenarbeit (B/Z) GnbH

cooperation

Feasibility for Rural Off-grid Electrification: Wood_{feedstock}

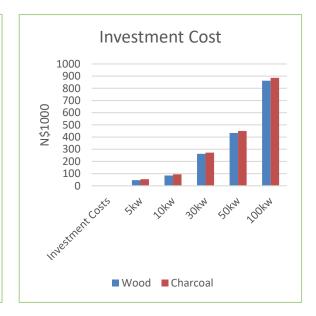


Feasibility for Rural Off-grid Electrification: Wood_{feedstock}

Feedstock Consumption per Plant

GIZ Devisione Gesellschaft für Internationale Zusammenarbeit (DIZ) GmbH

cooperation



Feasibility for Rural Off-grid Electrification: Charcoal Vs. Wood

100kw



Feasibility for Rural Off-grid Electrification: Charcoal Vs. Wood

Marula Kernel

- Drought-resistant tree that is widely distributed in sub-Saharan tropical Africa.
- Mostly found in the northern part of Namibia.
- Dry kernels are used as source of fire as well as fertilizer.
- 80 000 households, 5 estimated Trees.

1km Distance
For

GIZ Exulsate Gesellschaft för Internationale Zusammenarteit (DIZ) ämbl

cooperatio

	5kw	10kw	30kw	50kw	100kw
Production Cost (N\$/kwh)	15.82	8.27	4.53	3.77	3.02
Investment Costs (N\$1000)	45.98	84.28	262.17	433.29	862.08
Net Present Value (N\$1000)	1309.4	1341.64	2007.22	2678.23	4076.81
Internal rate of Return(%)	17.16	9.72	4.79	3.91	3.05
Biomass consumption					
(t/year)	39.04	78.07	234.22	390.36	780.72
Biomass Available (t)	15.00	45.00	195.00	300.00	600.00
No Of Households	1	3	13	20	40

Feasible for Small scale <10kW

• Distribution Cost

•

Transportation Cost

 For as long us the plant is maintained, monitored & understood locally, small scale plant will always be feasible.

• ELECTRICITY IS THE PASSWORD!

 Establishment of Policies to effortlessly influence the integration of biomass gasification with other existing renewable technology.

Feasibility of Bio-Gasification Technology for Rural Off-Grid Electrification in Namibia

Thank You!

