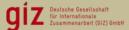


POTENTIAL OF HIGH QUALITY COMPOST DERIVED FROM ENCROACHED BUSHES

Ibo Zimmermann (NUST) & Beckser Shipingana (CCF)

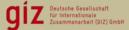
Poor quality composts

- Most commercial composts are of poor quality
- Expected to be applied at high rates
- To provide mainly carbon and little fertility
- Low or no humus
- Bacteria dominate the microbes
- They tend to favour the growth of weeds


High quality composts

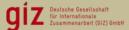
- High quality compost needs time to mature
- Can be applied at very low rates
- To provide mainly spores of diverse fungi
- That form associations with crop roots
- That in turn feed soil microbes with root exudates
- To build up soil carbon by growth

Potential feedstock for production of high quality compost


At CCF

Small branches with leaves, such as those selected for milling into fodder, are also appropriate for conversion into high quality compost

Conversion of thicker branches into biochar in Kon-Tiki kiln


At CCF

Some of the thicker branches from harvested bushes can be converted into biochar for incorporation into the feedstock for compost

Small branches are shred into green chop at CCF

The resulting "green chop" is blown into the trailer

Green-chop is later offloaded from the trailer

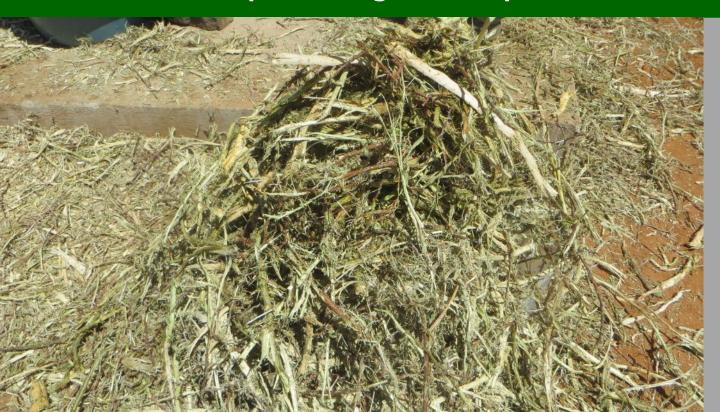
First attempt at milling of green chop resulted in excess scattering

This was solved by placing a netted hood over the mill

Later in season when bushes were more moist, the shredding produced green chop fine enough for use without milling

Green chop is transferred to Kon-Tiki kiln ...

... for wetting in the kiln

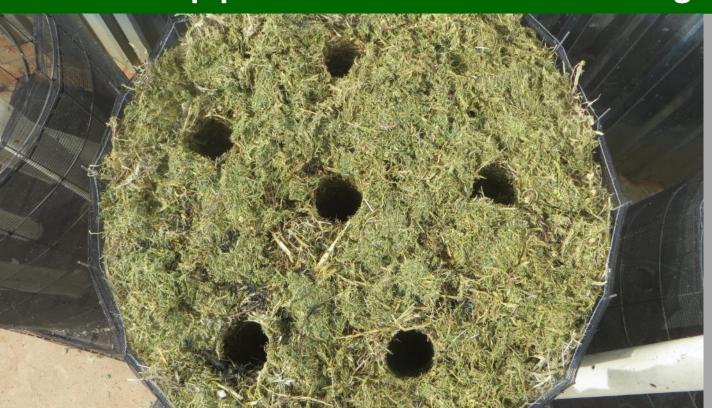


Coarse pieces of green chop are removed by hand

Wet green chop is poured into Johnson-Su Bioreactor at CCF

Crushed biochar is scattered over every 2 buckets of chop

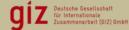
Pitch fork is used to level and compress chop in bioreactor

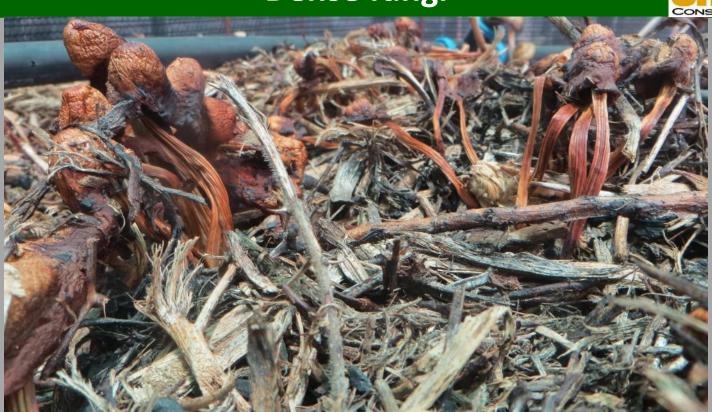


Ventilation pipes are removed the following day

Sprinklers and drip for daily irrigation of 6-8 litres

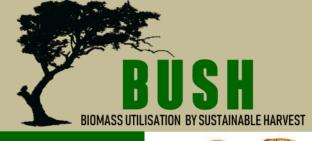
When the moist feedstock has cooled down after the first few days, some earthworms are introduced from above, which multiply rapidly as they move down


Fungi growing out of top



Dense fungi

Testing various rates of biochar applied in reactor feedstock at CCF



The amounts of crushed biochar added to each of the eight reactors are 0, 1, 2, 3, 5, 10, 15 and 20% of the volume, to hopefully determine the optimum. Will be ready for testing in Jan 2020

Fungi growing out of sides

About 300 kg of compost is expected to be harvested per reactor after 12 months. No turning, which would disrupt fungi

Bioreactor at Okukuna farm

Bioreactor at NUST

